Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke.

نویسندگان

  • Hua Hong
  • Jin-Sheng Zeng
  • David L Kreulen
  • David I Kaufman
  • Alex F Chen
چکیده

Statins have recently been shown to exert neuronal protection in ischemic stroke. Reactive oxygen species, specifically superoxide formed during the early phase of reperfusion, augment neuronal injury. NADPH oxidase is a key enzyme for superoxide production. The present study tested the hypothesis that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia. Transient focal ischemia was created in halothane-anesthetized adult male Sprague-Dawley rats (250-300 g) by middle cerebral artery occlusion (MCAO). Atorvastatin (Lipitor, 10 mg/kg sc) was administered three times before MCAO. Infarct volume was measured by triphenyltetrazolium chloride staining. NADPH oxidase enzymatic activity and superoxide levels were quantified in the ischemic core and penumbral regions by lucigenin (5 microM)-enhanced chemiluminescence. Expression of NADPH oxidase membrane subunit gp91(phox) and membrane-translocated subunit p47(phox) and small GTPase Rac-1 was analyzed by Western blot. NADPH oxidase activity and superoxide levels increased after reperfusion and peaked within 2 h of reperfusion in the penumbra, but not in the ischemic core, in MCAO rats. Atorvastatin pretreatment prevented these increases, blunted expression of membrane subunit gp91(phox), and prevented translocation of cytoplasmic subunit p47(phox) to the membrane in the penumbra 2 h after reperfusion. Consequently, cerebral infarct volume was significantly reduced in atorvastatin-treated compared with nontreated MCAO rats 24 h after reperfusion. These results indicate that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normobaric hyperoxia protects the blood brain barrier through inhibiting Nox2 containing NADPH oxidase in ischemic stroke

Normobaric hyperoxia (NBO) has been shown to be neuro- and vaso-protective during ischemic stroke. However, the underlying mechanisms remain to be fully elucidated. Activation of NADPH oxidase critically contributes to ischemic brain damage via increase in ROS production. We herein tested the hypothesis that NBO protects the blood-brain barrier (BBB) via inhibiting gp91phox (or called Nox2) con...

متن کامل

C242T polymorphism of NADPH oxidase p22 PHOX gene and ischemic cerebrovascular disease in the Japanese population.

BACKGROUND AND PURPOSE Superoxide has been implicated in the pathogenesis of ischemic stroke and atherosclerosis. NADPH oxidase, a major source of superoxide generation in neutrophils and the vascular system, plays a critical role in ischemic injury and atherogenesis. Recently, an association between the C242T polymorphism of p22 PHOX, an essential component of NADPH oxidase, and coronary arter...

متن کامل

Atorvastatin protects against cerebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects

In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral ischemia/reperfusion injury. The middle cerebral artery ischemia/reperfusion model was established, and atorvastatin, 6.5 mg/kg, was administered by gavage. We found that, after cerebral ischemia/reperfus...

متن کامل

Apocynin in the Treatment of Ischemic Stroke

Apocynin has been used as an efficient inhibitor of the NADPH oxidase complex in experimental studies. NADPH oxidase was originally identified immune cells as playing an important microbicidal role. In cerebral ischemia, inflammation is increasingly being recognized as contributing negatively to neurological outcome, with NADPH-oxidase as an important source of superoxide. Recently, several for...

متن کامل

Attenuation of Focal Cerebral Ischemic Injury Following Post-Ischemic Inhibition of Angiotensin Converting Enzyme (ACE) Activity in Normotensive Rat

Background: Central renin angiotensin system has an important role on the cerebral microcirculation and metabolism. Our previous work showed that inhibition of angiotensin converting enzyme (ACE) activity prior to induction of ischemia protected the brain from severe ischemia/reperfusion (I/R) injuries. This study evaluated the impacts of post-ischemic inhibition of ACE, enalapril, on brain inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 291 5  شماره 

صفحات  -

تاریخ انتشار 2006